
JOURNAL OF COMPUTATIONAL PHYSICS 70, 500.520 (1987) 

Algorithms for Calculating Quark Propagators on Large Lattices 

C. B. CHALMERS, R. D. KENWAY, AND D. ROWETH 

Department of Physics, University of Edinburgh, The King’s Buildings, 
Mayfield Road, Edinburgh EH9 3J2, Scotland 

Received April 11, 1986; revised September 12, 1986 

We describe methods for solving large sparse systems of linear equations on computers with 
limited fast memory, or high ratios of processor speed to bandwidth between main and fast 
memory. Our algorithms are designed for calculating quark propagators, columns of the 
inverse of the fermion matrix in Lattice Quantum Chromodynamics, but are more generally 
applicable. We compare their rates of convergence and the balance between CPU time and 
I/O overhead. We present a block-iterative algorithm which when implemented on the DAP is 
5 times as efficient as the Conjugate Gradient Method for 163 x 24 lattices (complex linear 
systems of size approximately 3 x 105). %, 1987 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we describe and compare a variety of algorithms for computing 
columns of the inverse of a large sparse matrix resulting from the discretisation of 
the partial differential equation for the quark propagator in lattice gauge theory. 
This step is the dominant part of the calculation of hadron masses in lattice Quan- 
tum Chromodynamics (QCD). The mass estimates that we have obtained will be 
described elsewhere [I]. The work was performed on an ICL Distributed Array 
Processor (DAP) [a]. This is a SIMD square array of 4096 bit-serial processing 
elements, each with 4K bits of memory and nearest-neighbour connections, 
operating in parallel. Algorithms have to be modified to take account of the 
hardware features of this machine, but the following discussion is general and 
applies to most memory-limited implementations. An implementation of an 
algorithm becomes memory-limited when the processors require data to be moved 
from slow to fast memory at a higher rate than the machine can sustain. This 
problem arises frequently in algorithms requiring repeated matrix-vector products. 
Our slow memory is the disks of the mainframe hosting the DAP, and data rates 
between these disks and the main memory are low. Similar problems can arise on 
supercomputers with very high CPU speeds but only small amounts of fast memory 
on the processors. 

The systems we want to solve are larger than can be contained in fast memory 
and must be partitioned into blocks of manageable size. These blocks must be 
repeatedly paged into fast memory while computation is proceeding. Thus we are 
looking for algorithms with balanced computation and I/O requirements. Many of 

500 
0021-9991/87 $3.00 
Copyright 0 1987 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



QUARKPROPAGATORCALCULATIONS 50% 

the standard algorithms for solving large systems of linear equations do not 
this criterion. We define the efficiency of an algorithm-hardware combinative to be 

CPU time/connect time = I/(stretch factor), (1.1) 

where connect time = CPU time + I/O overhead. 
Our work is directed towards the computer solution of QCD, which is the 

turn field theory of the strong nuclear force. It describes how the observed ha 
such as protons, neutrons, and pions, are built up as bound states of the elementary 
quarks via a non-Abelian gauge interaction mediated by gluons. The bindin 
mechanism is essentially non-perturbative and beyond the reach of analytica 
methods. The gluons and quarks carry a strong “colour” charge, analogous to the 
electric charge. This takes values in the fundamental representation of the group 
SU(3), and the whole theory is invariant under spacetime-depen 
rotations of the fields, called gauge transformations. In 1974, Wilson [3 
a gauge invariant formulation of QCD, free from divergences, in which s 
replaced by a finite 4-dimensional Euclidean lattice of points 

n = (n,, n2, a3, 41, n, = l,..., N, (i= 1, 2, 3) (1.2) 

n4 = I,..., M 

and the field derivatives by finite differences. We use a hypercubic lattice with unit 
spacing. The physical lattice volume should be large enough to contain the hadrons 
being studied, while the grid should be as fine as possible to give a good 
approximation to the spacetime continuum. 

A typical lattice is of size 163 x 24 (elongated in the time direction, because we 
obtain hadron masses from the rate of decay of hadron propagators at large 
Euclidan times). Coupling constants are chosen so that such lattices measure 
approximately l-2 fm across, which is just large enough to contain part 
proton. Even larger lattices are desirable in order to keep finite size e 
tably small. 

The quantities we need to measure are average values, with respect to a 
oltzmann-like probability distribution, of functions O($, $, U) of the elementary 

quark and gluon fields 

where I,I? and I,!I are quark fields on the sites, the us are SU(3) matrices associated 
with the links of the lattice, and Z is a normalisation factor. The action S is given 
by C3,41, 



502 CHALMERS, KENWAY, AND ROWETH 

where m is the quark mass, and So is the pure gauge part of the action 

&=$I ReTr(U,(n) U,(n+p) UJ(n+v) U:(n)). 
nPv 

(1.5) 

We use Susskind fermions [IS] which are defined by a transformation [6] on the 
above action which diagonalises it in spinor space, so that three of the four spinor 
degrees of freedom may be discarded 

ti(n) = Y;‘Y?Y;‘YTX(n). (W 

Then the new action is 

s= s, + $ c j(n) r,@w..J,(4 x(n + P) - up -P) x(n -PII 
v 

where 

(1.7) 

(1.8) 

This saves a factor of 4 in storage. It is possible to perform the average over the 
quark fields, which are Grassmann variables, analytically. If we write J&’ = my and 

%JUl = Irl(n)CUl(n) dnl+l,m, - Wm) &- L~,I an2m2 6n,,n, L,, 

+ h(n)CU2(n) Jn2+ l,m2- G(m) 6,,- l,mzl klrn, 6,,,, dnqmq 

+ tr13b4Cu3(4 b,+ l,m, - W4 ~n3~1,m,1 b,,, h,,, Lqmq 

+ Sr4kNu4W h4+,,m4- u+(m) L,,,,l hjm, h,,, bjm3, (1.9) 

where U,(n) (p = l,..., 4) is an SU(3) matrix, and JJ the identity, the resulting 
formula for the quark propagator from the origin 0 to the site n is 

($(O)$(n))=Z-‘I [dU](~++)),ldet(~++)e’SG(“). (1.10) 

Note that 9 is an L x L complex matrix (where L = 3N,3 N); indices for the complex 
components of the SU(3) matrices at each site in (1.9) are suppressed for clarity. 
This matrix acts on complex vectors x of size L, a complex triplet at each site of the 
lattice. 



QUARK PROPAGATOR CALCULATIONS 

In the quenched approximation the determinant term is neglected, an 
remaining gauge field average is evaluated using a Monte Carlo algorithm [7] to 
generate a sequence of configurations distributed with probability exp( -S,) so 
that 

For a statistically significant estimate we should calculate ($24 + k&,’ for many 
independent configurations. Each of these requires solving the system of linear 
equations 

(~[{u)i]+~)~~X~=SnOliub (b= L2, 31, (1.12) 

where the indices a, b, c refer to colour. For each initial spacetime origin 8 we 
calculate three columns x of the inverse, corresponding to the three values of the 
colour index b. This paper is concerned with finding the best way to calculate x for 
a given configuration of U matrices. 

The sparse matrix 9 is not explicitly stored, instead we use the expression 

(9x):: = 4 =f q,(n)( up(n)a7L’XC(n + p) - UJ(n - py”xyn - p)) (1.13) 
p=l 

to define the action of a matrix operator D on a vector X, given a set of link 
matrices (U). Note that the vector argument and result are complex tripiets (in 
colour) at each site. In the remainder of our work we will use the operator forms 
D, M, and I rather than the equivalent matrices 9, A’, and 9. 

The matrix operator D connects a site on the lattice to each of its nearest 
neighbours, but not to itself, so we can divide the lattice up into two classes of sites, 
even and odd [S] (depending on whether n, + n2 + n3 + n4 is even or odd) in such a 
way that the calculation of Dx on even sites requires data on odd sites only (and 
vice versa). This allows us to split the propagator equation into two parts 

DXodd + ijqxeven = &even 

Steven + MXodd = &xid, 
(1,14) 

where the vector xeven is zero on all the odd sites, Pdd zero on all the even sites, an 
x = Xeven + Xodd. By restricting our source term to the even sites we have 

( _ D2 + M2) “zn - ,Sj”““” (1.15a) 

From (1.13), + = -D, i.e., D is anti-hermitean, hence - e &“on- 
struct D2xeven via two applications of (1.13). Solving (1.15a) for xeven and 



504 CHALMERS, KENWAY, AND ROWETH 

reconstructing xodd with (1.15b) rather than solving for x directly (Eq. (1.12)), 
halves the size of the system of linear equations. 

By storing only 2 rows of the SU(3) link matrices as scaled 16 bit integers and 
reconstructing the third row when needed, we can compress the storage of the 
non-zero entries of D into 2 x lo6 words of 32 bit memory. This is still 4 times the 
total memory of the DAP. We have exploited the gauge freedom to transform the 
configuration into temporal gauge (i.e., we have rotated all the links in the time 
direction to 1). This achieves a further 25% saving in storage. 

A convenient partitioning of the operator (D + M) is into 3-dimensional 
timeslices, i.e., 

(D+M)= 

(D,+M 
-T 

) T 
P,+M) T 

-T (D,+M) T 
. . 

-T @N-,+-M) T 
-T P,+W 

> (1.16) 

where the operators D, are the 3-dimensional equivalent of (1.13) (i.e., p runs from 
1 to 3) for links on timeslice t. Here M = m1 and 

T=i(-1) ni + n2 + nj + “41 > (1.17) 

where I is the 3-dimensional identity operator (of size 3N:). The operators D, and T 
anti-commute 

D,T+TD,=O (1.18) 

and 

T2 = +I. (1.19) 

We have chosen our fermionic boundary conditions to be Dirichlet in time (fer- 
mionic fields are zero for t < 1 and t > N and all entries apart from the blocks 
shown in (1.16) are zero) and anti-periodic in the spatial directions. Previous 
calculations have shown that these boundary conditions are appropriate for the 
extraction of hadron masses [9]. Dirichlet boundary conditions have the additional 
advantage that, should subsequent analysis reveal that the time extent of the lattice 
is too short, prpagators may be extended to longer times using the Distant Source 
Method [ 10 J without having to re-do the whole calculation. Each of the blocks D, 
has dimension 3N,3 and is banded, but with a very large bandwidth due to the anti- 
periodic boundary conditions in space. D is complex, block tridiagonal, anti-her- 
mitean and sparse. For a 163 x 24 lattice we must solve a system of 294,912 complex 
linear equations. 

By applying the operator D to itself and using (1.18) and (1.19) we arrive at a 
timesliced partitioning for - D2 in ( 1,15), 



+1-D: 
CD,-D,F 

-$I 
-g-y= . . 

QUARKPROPAGATORCALCULATIOi'6 

(D,-DIP- -iI 

+1-D; 

(D, - D,)T 
. . . . . . . . 

-$I 

505 

20) 

( -D2 + M2) is hermitean positive definite and (still) very sparse. We are par- 
ticularly interested in (1.15) for low values of m (m d 0.1) under these circ~msta~- 
ces the operator is not diagonally dominant. 

The rest of the paper is organised as follows. Section 2 describes our use of the 
Conjugate Gradient Method to solve (1.15). In Section 3 we consider strategies for 
preconditioning this algorithm. In Section 4 we investigate the application of an 
Iterative Block Gauss Elimination algorithm [ll] to Eq. (1.12) and discuss its 
failings. In contrast we find that the Block Iterative Methods of Section 5 perform 
well, and we describe the implementation of an eflicient Iterative Block Successive 
Over-Relaxation (SOR) algorithm. (We use the term Pterative Block SOR to refer 
to a formal solution of N x N block equations such as (1.15) with - 
according to (1.20) using an SOR algorithm on the blocks and iterative solution of 
the reduced rank systems that arise thereby, likewise the term Iterative Block Gauss 
Elimination.) Our conclusions are presented in Section 0. 

2. THE CONJUGATE GRADIENT ALGORITHM 

Our starting point for solving the propagator equation (1.15) is the Conjugate 
Gradient (CG) Algorithm [12], intoduced as an exact method for solving systems 
of linear equations, but now established as an iterative method for solving large 
sparse systems [ 131. 

To solve Ax = h for hermitean A = ( - D2 + 

initial guess x0 

Po=rO=b-Ax,, 

loop while (r,, rk) > E for k = 0, 1, 2,... 

ak = (‘-k, rk)/(Pk, &,I 

X kil =xk+akpk 

rk+l =rk-u&k 

Pk=(r kfl? rk+l)/(rks rk) 

Pk+i=rk+l+fkPk 

end loop 

(2.1) 



506 CHALMERS, KENWAY, AND ROWETH 

The Lanczos algorithm is also used in this context [14]; its relationship to the 
CG algorithm is described in [15]. 

Our choice of CG as a starting point was motivated by properties of the matrix 
operator D. First we must, under all circumstances, preserve its sparsity and struc- 
ture. Second, we wish to investigate solutions to Eq. (1.15) for a range of values of 
m for each configuration, and we are most interested in the small m region for 
which ( -D2 + M2) is not diagonally dominant. In this limit CG converges 
significantly faster than relaxation methods [S]. 

The CG algorithm is known to converge best for matrices with clustered eigen- 
values and low condition number K(A). For hermitean positive definite A, 

A 
K(A) =y, (2.2) 

Ill,” 

where A,,, and /imin are the largest and smallest eigenvalues of A. We have infor- 
mation on the spectrum of D from earlier work on small lattices [ 161; the dis- 
tribution of high and low eigenvalues for an S4 configuration is shown in Fig. 2.1. 
Let D have eigenvalues i& J. real. The eigenvalues n of ( - D2 + M2) will be 1’ + m2. 
‘4 max - 4&x - 18.5 for values of m in our range of interest. When m $ Amin, 
4dnNm 2, and so the condition number will be approximately 18.5/m2. However, 
when m is very small, it is lZmin that controls convergence. We know that this eigen- 
value is very unstable, varying by many orders of magnitude from one con- 
figuration to the next. Hence, provided we do not lower m too far, we would expect 
Cl319 

l%(~k, y/J - k log((m)/(m)) N -mk. (2.3) 

4.5 

1 
4.0. 

3.5. 

T  

3.0- 

0 2.5- 

: 

&22.0 
.- 

km 1.5. 

1.0. 

0.5-1 

. . . . . . . . . . . . . . . . . . . . . . '.'. ',.. 

0.0,' v I I ) ( I r 
0 10 20 30 40 50 60 70 &I 9'0 ' 100 

Eigenvalue Number 

FIG. 2.1. Spectrum of the absolute values of the eigenvalues of an %’ D operator. The first 100 eigen- 
values to converge using a Lanczos algorithm are plotted. 



QUARKPROPAGATORCALCULATIONS 

We have implemented the CG method for lattices of size 164 on the 
(Similar work has been done on a Cyber 205 [17].) Empirically, as shown in 
Fig. 2.2, we find that the iteration scheme converges smoothly, at a Binear rate 
approximately proportional to m (for 0.01 d m < 0.50) as in (2.3): up to so 
determined by the precision used to do the calculation. 

The departure of Ye, the iterative residual vector, from b 
onset of roundoff errors in the CG algorithm; the importance 
judged by restarting the system with xk as the new x0. We see a marked increase in 
the residual on restarting after 700 CG iterations (see Tab ) in 32-bit ar~tbmet~c 
at m = 0.01, indicating that roundoff effects have become si ficant. We restart the 
solver after 500 iterations at the lowest mass, and run for a further 200 iterations, 
by which time the desired accuracy (Table II) is attained. e use the fo~~ow~~~ 
citeria to decide how long to run the CG algorithm: 

(i) That baryon propagators (sums over space and colour of x3) shoul 
unchanged in the third decimal place on ali timeslices under further iteration. 

(ii) That on restarting, the baryon propagators should not change an 
norm of the residual vector should not increase significantly. 

(iii) That the baryon propagators obtained should be the same (to the abovfe 
tolerance) as those obtained from the same configuration after it has undergone a 
random gauge transformation. (The baryon propagators are independent of choice 
of gauge, but the quark propagators 
configuration to check the program. 

x are not). We performed this test on our first 

460 560 660 760 
terat ions 

FIG. 2.2. Rate of convergence of conjugate gradient algorithm, showing the dependence on mass for 
a 164 lattice. 



508 CHALMERS, KENWAY, AND ROWETH 

TABLE I 

Measurements of (rk, rk) for CG Algorithm on a 16“ Lattice, 
and the Effects of Restarting the Iteration Scheme; w1= 0.01, 

g2 = 1.0 

Number 
of sweeps (rk, rk) (rk, rk) on restart 

100 0.2850-2 
200 0.3226-3 
300 0.406E-4 
400 0.746E-5 
500 0.771E-6 0.7808-6 
600 0.903E-7 
700 0.856E-8 O.l50E-7 

The values of (rk, rk) sufficient to satisfy these conditions for 0.01 < m < 0.5 are 
given in Table II. We apply the above conditions on the last timeslice; closer to the 
origin the baryon propagators are stable in the 4th and 5th decimal places. 

The CG algorithm performs well, but is very expensive in terms of storage. We 
need to store 3 vectors per colour, each of size 3iV,3N words, which together with 
the 27Q’V words of links must be paged through the machine on each iteration, as 
the system is too big to be held in memory. This disk-to-DAP paging of timeslices 
is done asynchronously, the links for timeslice (t + 1) being paged on while those 
for timeslice t are being used. The DAP data expansion software, DDX, enables 
variables held in COMMON areas to be transferred between DAP and disk while 
the program is running. 

The CG vectors can only be updated when calculations of the scalars CI and p are 
complete. Barkai et al. [17] have proposed a modified CG algorithm which avoids 
some of the synchronisation problems at the expense of an extra vector. However, 
because of the DAPs low I/O rate (approximately 250-300 Kbytes/sec compared to 
a floating-point performance of around 15 Mflops) the matrix-vector multiply step 
qk = Ax, is I/O bound by itself, and so we use the standard algorithm for a her- 
mitian matrix. 

TABLE II 

Stopping Conditions for CG Algorithm with Typical Measurements of (rk, rk) 

At g2 = 0.95 
At gz= 1.00 

Typical (rk, rk) 

0.01 0.04 0.09 0.16 0.5 

500+200 300 150 120 40 
5OOf200 250 120 100 40 

0.85E-08 0.41E-09 0.84E- 12 0.20E-15 0.38E- 15 



QUARKPROPAGATORCALCULATIONS 509 

TABLE III 

Approximate Timings (in set) for CC Algorithm on the DAP 
for a 164 Lattice 

Step” CPU IIQ I/Q overhead 

Calculate Apk 1.2 
Update vectors 0.6 
Scalar products 0.2 

Totals 8 

Total time per iteration = 48 set 

15 10 
30 30 
0 0 

45 40 

a See Eq. (2.1). 

The total connect time for a propagator calculation running on the DAP is a fat-, 
tor of 6 longer than the processor time used. Similar I/O stretch factors are re 
[ 171 for a Cyber 20.5. Details of the timings are given in Table III. Almost 
DAP CPU time is used applying the D operators. CPU time for updating the vec- 
tors is insignificant. The 10 set of Z/O overhead that occur while the links are being 
paged in and the D operators applied is not available. But during the longer 
(30 set) overhead while the vectors are paged on and off the machine, we could do 
useful work. In the next section we describe a preconditioned Conjugate Gradient 
algorithm. The work done modifying the residual vector (from rk to dk, see bebw) 
in this algorithm can be performed while the CG vectors are being moved. 

Tbe standard Conjugate Gradient method (without preconditioning) is only 
really practical for propagator calculations when either (i) the system of equations 
is small enough to fit within the machine’s fast memory or (ii) the slow-to- 
memory bandwidth is sufficiently high to keep the processor(s) going all of 
time. Systems of equations satisfying (i) are not usually large enough to be of 
physical significance and machines satisfying (ii) are not widely available. (The 
Cray-2 and ETA-10 may achieve the necessary data rates.) Since most applications 
require as large a grid as possible, we must look for new algorithms that d.o not 
require large numbers of vectors, and that use many more floating-point operations 
per word of 110 transfer. 

3. PRECONDITIONING 

We began to consider the problem of introducing a preconditioning step into our 
Conjugate Gradient algorithm with two questions in mind, (i) could we find a 
suitable preconditioning matrix N, and (ii) if so, could the preconditioning steps 
performed while the CG vectors were being paged on and off the machine, prior to, 
and after updating. Previous studies [lS] of preconditioned CG algorithms have 
concluded that significant reductions in the number of CG iterations can be 

581/7012-16 



510 CHALMERS, KENWAY, AND ROWETH 

achieved, but at the cost of much more CPU time per sweep. Our aim is to utilise 
the CPU time we have available (because of the Z/O overhead in the CG code) to 
offset this disadvantage. 

The motivation for preconditioning is to speed the convergence of an iterative 
solution of the system of equations Ax = b by premultiplying by N-‘, where N-l is 
an approximation to A - ‘, and then solving 

N-‘Ax=N-‘b, (3.1) 

where @N-IA) +K(A). If N-’ is a good approximation to A-’ then N-‘A-1, 
K(N- ‘A) N 1 and our iterative scheme will converge rapidly. 

The choice of preconditioner N is crucial. We are restricted by the requirement 
that it must use little or no extra storage space, and by the necessity of having N in 
operator form. We cannot, for example, consider using block LU decomposition or 
block-diagonal scaling, as the calculation of the block-diagonal inverses for 
d = blockdiag(D + M) would require 3N,2 column inversions, and some 150 Mbytes 
of storage for each timeslice, as all such inverses are dense (like (D + M) ~’ itself). 

Instead we use a preconditioned CG algorithm of the form [13], 

initial guess x0 

r,=b-Ax, 

solve Nd, = rO 

po=do 
loop while (rk, dk) > E for k = 0, 1, 2 ,... 

elk= trk, dk)/(Pk, APk) 

Xk+l=Xk+ClkPk 

r k+l=rk-akbk 

solveNd,+,=r,+, 

bk=bk+l, &+ l)/(rk> d/c) 

Pktl =dk+l +bkPk 

end loop 

(3.2) 

where N is an approximation to A and the system of equations Nd,, 1 = ri+ 1 is well 
conditioned and its iterative solution converges rapidly. 

We have been experimenting with preconditioning using free fermions. We use 
the free fermion operator D,, Eq. (1.9) with all the U’s set equal to the identity, to 
approximate D, and on each iteration of the CG method we solve the system 

(-%+MZF)4+l=r;:+l, (3.3) 

where M, = m,I, for each of the 3 complex colour components of di+ 1 (a = 1,2,3). 
The free fermion systems are well conditioned /i,,, < m2, + 16 and /imin > rni + 



QUARKPROPAGATORCALCULATIONS 511 

3 sin* Pmin, where Pmin = K/N, for anti-periodic boundary conditions in all 3 s 
directions, so in our case K(N) d 140. The operator D, can be applied w  
using any extra storage space and the systems can each be solved quickly; the 
residual squared for the system of equations (3.3) being - IO-r6 after 15 iterati 
of an inner CG loop. The mass mr is a free parameter which should be optimi 
having a significant dependence only on the gauge coupling and the q 

Our choice of a free fermion preconditioner is motivated by the fact 
distances (within a proton, e.g.) quarks behave as free particles since 
asymptotically free theory. Consequently, free propagation becomes a 
approximation as the lattice spacing decreases, which will be the ca 
simulations using larger lattices. So we would expect this pre~o~ditioner to work 
better the larger and computationally more demanding the system. There is a 
problem, however, in that within a gauge theory there is no clear d~st~~~t~~~ 
between high and low momentum modes unless we fix a gauge. The quark 
propagator is gauge dependent and will only resemble a free propagator in a ga 
where the link variables are chosen to be as close to the unit matrix as possible. 
began by using axial gauge in which all the timelike links (this is possible 
Dirichlet b.c. on the fermions) and as many of the spacelike links as possible are 
rotated to the identity. We employ temporal gauge (timelike links only rotated to 
the identity) in any case to save on storage. 

We have not succeeded in reducing the total time necessary to solve the 
with this choice of gauge. We have recently learned that the Cornell grou 
have had some success using covariant gauges, and by storing an approximation to 
the diagonal of (D + M) in momentum space as a precontitioner, tra~s~ati~~ 
between momentum space and configuration space using fast fourier transforms 
(FFTS). 

The group working at Tsukuba University [20] have presented an incomplete 
LDU decomposition algorithm which they use in the context of dynamical fe~rn~~~ 
simulations (on 93 x 18 lattices). 

4. ITERATIVE BLOCK GAUSS ELIMINATWN 

Following the method of Bowler et al. [ 1 I], we perform Gauss Elimination on 
the blocks of the matrix (D + M) partitioned according to (1.16), i.e., omitting 
even-odd partitioning for simplicity. Consider the first two rows of the operator 

+ M). Let P, = I and P, = 4(D r +- M)T, add row one to 1 (row two) and we 
get 

PtT POT 0 ' 
0 Pr(D, -I- M) + P,T 0’ 



512 CHALMERS, KENWAY, AND ROWETH 

Let P,T = P1(D, + M) + P,T, then P, = 4P,(D, + M)T + P, as 4T2 = I. Continue 
this process until all the blocks in the lower triangle have been eliminated. 

PIT 
0 

where 

and 

P,T 0 

P,T P,T 0 
. . ‘. . . 

0 P,-,T I’,.,-,T 

0 P,T 

XN-1 

xN 

P,=P,-,+4P,+,(D,+M)T 

c,=d,+p, 6,+ ‘.’ +P,-, 6,. 

Cl 

c2 

cN-l 

cN 

For a delta function source on timeslice t, 

6,, = 
6 nO for t=t’ 

0 otherwise 
and CN=Pt-l 6,. 

> (4.2) 

(4.3) 

(4.4) 

(4.5) 

xN is the propagator from the origin to timeslice N, and its calculation requires 
solution of a system of 12,288 complex linear equations rather than 294,912, 

P,Tx, = cN (4.6) 

(down by a factor of N on x in (1.12)). The matrix operator P, is not hermitian, 
instead we solve the system 

PI,PNTxN = PLcN (4.7) 

using a CG algorithm. Having solved (4.7) for xN, we obtain x, for 1 < t < N by 
back substitution 

xt= -4T6,,+,+4T(D,+,+M)x,+,+x,+,, (4.8) 

setting xN+ 1 = 0. However, P, involves all N timeslices, so we must bring the com- 
plete set of links through the machine (twice) per iteration of the CG algorithm. 
These transfers are done asynchronously. The stretch factor is of order 2. 

We began testing this scheme for the interacting theory at high quark mass 
(m = 0.5), and obtained convergence rates in line with those predicted by Bowler 
et al. [ 111, and pion propagators consistent with previous results. But when the 
quark mass was lowered, convergence rates dropped dramatically and pion masses 
calculated from apparently converged quark propagators were clearly incorrect. At 
a quark mass of 0.01 we failed to obtain a converged propagator after 10,000 
sweeps on a 163 x 8 system (see Fig. 4.1). 



QUARK PROPAGATOR CALCULATIONS 513 

-9.0 
0 1000 2000 3000 4000 5000 6000 7000 8000 

Iterations 

FIG. 4.1. Convergence of the pion propagator signal G, using Iterative Block Gauss Elimination 
algorithm; 8000 sweeps on a 163 x 8 lattice at m = 0.01 with origin on timeslice t = 3. 

We can explain the failure of this method to converge in two ways: 

(i) The operator P,, although of dimension 12,288 rather than 294,912, is a 
fully dense matrix, containing terms linking each site of the 163 spatial lattice to 
every other.site. It is only diagonally dominant at very high m. 

(ii) The projection mechanism (4.8) for obtaining x, on timeslices 1 to N- 4 
amplifies exponentially any errors present in the solution xN~ Later studies showe 
that the propagator on timeslice N is always the last to converge and so using it as 
a basis for obtaining x, for 1 d t < N is unsound. 

Having reached these conclusions we examined the free fermion data of 
et al. for a 164 lattice and found the convergence of the propagators 
qualitatively the same, but on a much shorter timescale (see Fig. 4.2). Pion 
propagators, given by 

measured using the quark propagators of Bowler et al., are stable and apparently 
converged to five or more decimal places for large numbers of iterations.’ They then 
undergo changes of several orders of magnitude before converging to the analytic 
result. This seems to indicate that the algorithm is losing track of the long range 
structure in time of the propagators. 

We therefore conclude that this Iterative Block Gauss Elimination algorith 

’ Fifty out of a total of 100 iterations for free fermions, 500 out of 1500 for a pure gauge configuration, 
i.e., a random gauge transformation of the unit configuration. This disparity in the rates of convergence 
for gauge equivalent configurations was not observed for the other algorithms considered here. 



514 CHALMERS, KENWAY, AND ROWEZTH 

-l.O- 
136 

0 200 400 600 600 1000 1200 1400 

Iterations 

FIG. 4.2. Convergence of the free pion propagator signal G, for Iterative Block Gauss Elimination 
algorithm; 1400 sweeps on a 164 lattice at m = 0.01. 

intrinsically unreliable; without knowing the answer in advance, it is difficult to 
know when to stop iterating when the convergence pattern is like that in Fig. 4.2. 

We would like to be able to retain some of the features of this algorithm-in par- 
ticular, solution of small systems of linear equations (preferably for diagonally 
dominant matrix operators). But we require a scheme in which an approximation 
to the correct long range structure of the propagator is obtained quickly. Such a 
method, which works well, is discussed in the next section. 

5. BLOCK ITERATIVE METHODS 

Consider the partitioning scheme for (D + M) in temporal gauge (1.16). We can 
define a class of block-iterative algorithms by regarding each 3N,3 x 3N,3 complex 
block as a component of an N x N linear system of equations, applying an 
established iterative algorithm (e.g., Jacobi, Gauss-Seidel or successive over- 
relaxation @OR)) to the N x N block equation and using an inner CG loop (where 
applicable) to solve the reduced rank systems of equations. 

We use an SOR scheme to solve the N x N system of block equations (5.1), 

(D,+W T 
-T (D,+M) T 

-T (D,+M) T 
. . . . . . 

-T (D,p,+M) T 

-T (D,+W 

Xl 

x2 

x3 

xN-l 

xN 

(5.1) 



QUARK PROPAGATOR CALCULATIONS 515 

and an inner iterative scheme to solve the system of equations 

t+M)Xjk+‘L co(6,+T~jk_:~)-Tx;k+)~)+ (1 -o)(D,+M)xjk’ (5.2) 

for each X, on each iteration k of the outer SOR scheme, where the parameter o is 
selected for optimum convergence. We can generalise this to the solution of 

(1.15) by analogy with (1.20) 

=Pt 

=w(6,+$yjk_t2l)+(D,-1-D,)Tyjk_:‘)+( 

$61~m)(C-Df+M2)yjk), 

where C = c1 and y, = Yven. 
The method can be used for any choice of temporal fermion boundary con- 

ditions, e.g., 

for periodic c = 4 and y , is identified with yN+ 1, 

for Dirichlet c = a for y, and yN and c = t for yt I < t < M; terms on the rhs. of 
Eq. (5.3) with t < 1 or t > N are dropped. 

The operator D, (defined by (1.13) for p= l,..., 3 rather than l,..., 4) is anti-her- 
mitian like D. So by analogy with D2, D: is hermitian, c and m are real, and so a 
standard CG algorithm can be used to solve the inner systems of equations. The 
matrix operator (C - Df + M2) is diagonally dominant (its diagonal ele Is being 
4 + c + m’). Further, this diagonal dominance remains as m goes to 0, so con- 
vergence of the inner CG algorithm is very rapid for all m. enote this scheme 
IBSOR (iterative block SOR). 

It would appear that the IBSOR scheme would require a huge amount of work, 
to exactly invert N systems of size 3Nz per sweep, but this is not the case. fl, (the 
rhs. of Eq. (5.3)) is accumulated from terms on 5 timeslices, and if we assume that 
the algorithm converges then the error on 3 of these timeslices y,, yrc 14 y1+2 is 
greater than that on the other two yt--2, ytP r. So we should aim to converge the 
(k + 1 )th iterate on timeslice t to a level where the residual on this timeslice is some 
factor lower than that on (t - 1). We should not run the inversion so long that we 
do work which will be wasted on the next sweep, when yI+ I and yt+ 2 have aIso 
been upgraded. This fits in with our aim of producing a balanced or CPIJ- 
dominated program, if we can do the necessary iterations in the time taken to page 
out yre2 and page in y,, 3 and the next set of links. This proves to be the ease. 

5.1. Tuning 



516 CHALMERS, KENWAY, AND ROWETH 

and if so what the optimum values of o are. We must also determine whether the 
tuning of cc) depends upon our choice of gauge configuration-if it does then the 
algorithm will be useless as we must calculate propagators on large numbers of 
configurations. 

Calculation of optimum values for o would require a detailed knowledge of the 
eigenvalue spectra of the D,, which we do not have. Instead we began by setting 
w  = 1 (the Gauss-Seidel limit of IBSOR) and m to 0.50 (a high value) and running 
the code to obtain a benchmark with which to compare IBSOR. To tune w  for a 
given m we ran the code for a lixed number of iterations (from a y,=O start), 
measuring the residual on each sweep for 4 values of o and noting the rate of fall of 
the norm of the residual. We then repeated this process using a second con- 
figuration. The optimum values of o were found to differ from one configuration to 
the next (as one would expect given the known variation in the lowest eigenvalues) 
but not by an unacceptable degree (see Fig. 5.1). We continued relining our values 
for o until the difference between the upper and lower bounds on the optimum 
value was approximately equal to the variation between the two test configurations. 

We have tuned the parameter o for mass values between 0.01 and 0.50 (see 
Table IV). We find that quark mass is the only significant independent variable. o 
is independent of N (for 8 <N,< 32) and does not need retuning from one con- 
figuration to the next. When the coupling constant g* in Eq. (1.5) is changed (in the 
small range we have explored) only slight adjustments of o are necessary. The 
range of acceptable o values narrows with decreasing mass. 

-,,.,~ ‘“=O; , I 
100 150 200 250 300 350 400 

Number OF Iterations 

FIG. 5.1. Rate of convergence of IBSOR algorithm, showing the dependence on mass for 4 different 
gauge configurations on a 163 x 24 lattice. 



QUARK PROPAGATOR CALCULATIONS 517 

TABLE IV 

Optimum Values of w for a 163 x 24 Lattice at g2 = 1.0 

m 0.50 0.16 0.09 0.04 0.01 
0 1.25 1.55 1.70 1.88 1.955 

5.2. Convergence Rates and Roundoff Errors 

Figure 5.1 illustrates the variation of the rate of convergence with mass and the 
slight dependence on configuration (at the lightest mass). The attainable values of 
(rk, rk), the residual squared, are limited by the precision to which we store the 
propagator as shown in Table V. But because the calculation of p, is limite 
range of 5 timeslices and there are no global scalars to be accumulated, the 
timesliced (rk, rk) fails off exponentially away from the source, with the propagator. 
This is demonstrated in Table V and Fig. 5.2. The source term is seen by the 
algorithm on every sweep, so there is no roundoff-error-induced cumulalive 
the propagator from the correct solution. 

The variation of convergence rate with the number of CG iterations used in the 
inner loop is shown in Fig. 5.3 for a mass of 0.04. Eight iterations of the CG inver- 
ter are more than sufficient at all our mass values. This can he traced to c > i in the 
1.h.s. of Eq. (5.3 ) which guarantees diagonal dominance of the sub-blocks. 

We find that 32-bit arithmetic is sufficient to converge all our propagators 

A4 = O.Ol,..., 0.50 on a 163 x 24 lattice. The convergence rate is independent of N (for 
8 6 N< 32) and the behaviour of the timesliced residual shown in Fig. 5.2 is a 
feature of all mas5 values. 

TABLE V 

Limiting Squared Residuals (rk, rk) for IBSOR Algorithm 

Limiting 

(J-k, Tk) Timesliced (rkr rk) 

164 

Free fermions to to+10 

32 bit 0.14x lo-l3 0.13 x low’3 0.92 x IO-‘* 
64 bit 0.20 x 10 m30 0.18 x 10-30 0.15 x 10-35 

Interacting fermions to + 5 to+10 to+15 

163 x 24 112 = 0.01 0.1 x 10-8 0.68 x 10-10 0.35 x low’0 0.19 x 10-‘O 
32 bit m = 0.09 0.3 x 10-10 0.54x lo-‘2 0.22 x 10-13 0.10 x 10-14 

m = 0.50 0.1 x lo-‘2 0.38 x IOWE 0.19 x lo-‘* 0.86 x PO-22 



518 CHALMERS, KENWAY, AND ROWETH 

-5.c 

1 og10 
-7.0 

Timeshced 

Residual’ 

-9.0 

-11.0 

-13.0, 

'1 

\ 

20 30 40 50 60 

Number of Iterations 

FIG. 5.2. Timesliced squared residuals (rk, rk), for IBSOR algorithm on a 163 x 24 lattice at m = 0.09, 
timeslices t,,, t0 + 2,..., t, + 18, for an origin on timeslice 5. 

-1.0- 
1 ogto 

Res I dua I2 

-2. o- 

I ter=ti 
-4.o- 

I t er=8 

0 10 20 30 40 50 
Number of Sweeps 

FIG. 5.3. Dependence of the rate of convergence of IBSOR on the number of CG inversion steps, for 
a 163 x 24 lattice at m = 0.04. 



QUARKPROPAGATORCALCULATIONS 519 

5.3. Performance 

We tested our algorithm by measuring the number of sweeps necessary to obtain 
agreement between hadron propagators calculated using our CC algorithm an 
those obtained using the IBSOR method. In both cases we required convergence of 
the propagators on the last timeslice to 3 significant figures (this gives 4 or 5 
significant figures near the source) and the results agreed to this accuracy. 

When we use 6 or 8 iterations of the inner CG inverter per sweep we find that 
our stretch factor is 1.02 (compared with 6 for our full CG algorithm). The time 
taken to produce a set of 164 propagators drops by a factor of around 3. For a 
163x 24 or larger lattice we gain a factor of between 5 and 7 on the CG method, 
increasing with mass. 

5.4. Implementation of the IBSOR Algorithm on Other Computer Systems 

Our work to date has been on the DAR, whose performance peaks at 15 
and whose asynchronous I/O rate is around 25G-300 Kbytes/sec. Our concl 
however, are valid for most computers on which the conjugate gradient algorithm 
has high I/O overheads for large systems of equations. The IBSQR algorithm in its 
present form has one third of the vector I/O per sweep, and requires significa~tl.~~ 
fewer sweeps. Consequently, performance is determined by the CPIJ speed, not the 
slow-to-fast-memory transfer rate. 

Further, the removal of synchronising scalars means that IBSQR can run at very 
close to 100% efficiency on multiprocessor systems, such as the Cray XMP/4. 
processor 1 is inverting the (k + 1)th block equation for y, then processor 2 can 
work in parallel on the (k + 2)th equation for yt--3 without any danger of write 
conflicts arising. Extending this idea we can fully utilise an YI processor system when 
our lattice has temporal extent 3n or larger. 

For a larger array of less power.ful processors, e.g., a few hundred Tra~s~ute~s~ 
other partitioning schemes may be more appropriate. In this case we ex 
iterative block SOR scheme based on 2- rather than 3-dimensional partitioning 
would perform very well. Hypercube architectures might make use of a 4-dimen- 
sional partitioning scheme. 

6. CONCLUSIONS 

We conclude that when the systems are small enough to fit in fast memory, the 
conjugate gradient algorithm is a good way of obtaining a few columns of the 
inverse (Susskind) fermion matrix, but for large systems the IBSOR algorithm is 
more efficient. At present IBSOR requires slightly more CPIJ time than C 
masses, but there is no I/O overhead. Thus on the DAR it requires less than 4 of the 
connect time of CG. In addition roundoff and synchronisation problems in 
accumulating the CG scalars have been avoided, and so bigger systems can be 
studied in 32-bit arithmetic than is possible with CG. 

Using the IBSOR algorithm we have been able to compute quark propagators at 



520 CHALMERS, KENWAY, AND ROWETH 

5 quark mass values for 32 configurations at g2 = 1.05, 1.0, and 0.95. We will con- 
tinue to explore the range of couplings within which our 164 x 24 lattice should be a 
good approximation to the spacetime continuum, making high statistics 
measurements of hadron propagators and matrix elements. 

ACKNOWLEDGMENTS 

We would like to thank the Edinburgh Regional Computer Centre for their continued DAP support 
and, in particular M. Brown. A. McKendrick, and K. Yarwood for writing the DDX data transfer 
software. The DAPs are supported by SERC Grants NG 11849 and NG 15908. We are grateful to K. C. 
Bowler and D. J. Wallace for many helpful discussions during this work. D.R. is supported by SERC and 
Inmos U.K. Ltd., C.B.C. acknowledges the award of a Vans Dunlop scholarship from the University of 
Edinburgh. 

REFERENCES 

1. K. C. BOWLER, C. B. CHALMERS, R. D. KENWAY, G. S. PAWLEY, AND D. ROWETH, Nucl. Phys. B 
284, 299 (1987). 

2. K. C. BOWLER AND G. S. PAWLEY, Proc. IEEE 12, 42 (1984); G. S. PAWLEY AND G. W. THOMAS, 

J. Comput. Phys. 41, 165 (1982). 
3. K. G. WILSON, Phys. Rev. D 10, 2445 (1974). 
4. K. G. WILSON in New Phenomena in Subnuclear Physics, Erice 1975, edited by A. Zichichi (Plenum, 

New York, 1977). 
5. L. SUSSKIND, Phys. Rev. D 16, 3031 (1977). 
6. N. KAWAMOTO AND J. SMIT, Nucl. Phys. B 192, 100 (1981). 
7. J. B. KOGUT, Rev. Mod. Phys. 55, 775 (1983); M. CREUTZ, L. JACOBS, AND C. REBBI, Phys. Rep. 95, 

201 (1983). 
8. K. C. BOWLER, D. L. CHALMERS, A. KENWAY, R. D. KENWAY, G. S. PAWLEY, AND D. J. WALLACE, 

Nucl. Phys. B240 [FS12], 213 (1984). 
9. C. BERNARD, T. DRAPER, AND K. OLYNYK, Phys. Rev. Lett. 49, 1076 (1982); Phys. Rev. D 21, 227 

(1983). 
10. R. D. KENWAY, Phys. Lett. B158, 327 (1985). 
11. K. C. BOWLER, R. D. KENWAY, G. S. PAWLEY, AND D. J. WALLACE, Phys. Lett. B 145, 88 (1984). 
12. M. R. HE~TENE.Y AND E. STIEFEL, J. Res. Nat. Bur. Standards 49, 409 (1952); GOLUB & VAN LOAN, 

Matrix Computations (John Hopkins Univ. Press, Baltimore, 1983), pp. 352-379; J. STOER AND 

R. BULIRSCH, Introduction fo Numerical Analysis (Springer-Verlag. Berlin, 1980), p. 572; I. S. 
BEREZIN AND N. P. ZHIDKOV, Computing Methods (Pergamon, Oxford, 1965) p. 34. 

13. J. K. REID, in Proc. Conference on Large Sparse Sets of Linear Equations (Academic Press, New 
York, 1971); P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY in Sparse Matrix Computations, edited 
by J. R. Bunch and D. J. Rose (Academic Press, New York, 1976). 

14. I. M. BARBOUR, N. E. BEHILIL, P. GIBBS, G. SCHIERHOLZ, AND M. TEPER, in The Recursion Method 
and Its Applications, edited by D. G. Pettifor and D. L. Weaire (Springer-Verlag, Berlin, 1985), 
pp. 1499164. 

15. A. N. BURKITT, Liverpool preprint, 1986 (unpublished). 
16. I. M. BARBOUR, P. GIBBS, K. C. BOWLER, AND D. ROWETH, Phys. Lett. B 158, 61 (1985). 
17. D. BARKAI, K. J. M. MORIARTY AND C. REBBI, Phys. Lett. B 156, 385 (1985); Comput. Phys. 

Commun. 36, 1 (1985). 

18. G. MEURANT, BIT 24, 623 (1984). 
19. G. C. BATROUNI, G. R. KATZ, A. S. KRONFELD, G. P. LEPAGE, B. SVETITSKY, AND K. G. WILSON, 

Phys. Rev. D 32, 2736 (1985). 
20. Y. OYANGI, University of Tsukuba preprint ISE-TR-86-57, 1986 (unpublished). 


